# Metal Ion-Aromatic Complexes. IV. Five-Coordinate Silver (I) in $\mathrm{C}_{6} \mathrm{H}_{6} \cdot \mathrm{AgAlCl}_{4}$ 

R. W. Turner ${ }^{1}$ and E. L. Amma ${ }^{2}$<br>Contribution from the Department of Chemistry, University of South Carolina, Columbia, South Carolina 29208. Received February 3, 1966.


#### Abstract

A new silver(I)-benzene complex $\left(\mathrm{C}_{6} \mathrm{H}_{6} \cdot \mathrm{AgAlCl}_{4}\right)$ has been prepared and its crystal structure determined by three-dimensional photographic single-crystal X-ray diffraction techniques. In contrast to the pleated sheet structure of $\mathrm{C}_{6} \mathrm{H}_{6} \cdot \mathrm{CuAlCl}_{4}$, the structure of $\mathrm{C}_{6} \mathrm{H}_{6} \cdot \mathrm{AgAlCl}_{4}$ is made up of infinite planar sheets composed of $\mathrm{AlCl}_{4}-$ tetrahedra connected by $\mathrm{Ag}-\mathrm{Cl}$ bonds with $\pi$-type $\mathrm{Ag}(\mathrm{I})$-aromatic interactions perpendicular to the sheet. This arrangement gives $\mathrm{Ag}(\mathrm{I})$ a coordination number of five: four $\mathrm{Ag}-\mathrm{Cl}$ interactions at 2.59, 2.77, 2.80, and 3.04 A , all $\pm 0.02 \mathrm{~A}$, and one $\mathrm{Ag}-\mathrm{C}_{6} \mathrm{H}_{6}$ interaction with Ag to the center of the nearest C - C bond, a distance of $2.57 \pm 0.06 \mathrm{~A}$. Each $\mathrm{Ag}(\mathrm{I})$ species is bonded to only one benzene ring such that the dihedral angle between the benzene ring plane and the plane defined by silver with its two nearest carbon neighbors is $98^{\circ}$. However, these shorter Ag-C distances are unequal at 2.92 and 2.47 A , both $\pm 0.06 \mathrm{~A}$. All other interatomic distances correspond to normal van der Waals distances.


The existence of a number of silver(I)-aromatic complexes of varying degrees of stability was demonstrated some time ago by the solubility measurements of Andrews and Keefer. ${ }^{3}$ The gross geometrical features of the silver(I)-benzene interaction in the silver perchlorate-benzene complex were predicted by both Mulliken ${ }^{4}$ and Dewar ${ }^{5}$ and verified by the structure investigation of Smith and Rundle. ${ }^{6}$ However, this structure has several unusual features; e.g., either a large anisotropic thermal motion or a statistical disordering of the Ag atoms is required, and the benzene ring shows an unusual distortion. In order to better understand the nature of the binding forces in silver-(I)-aromatic complexes as well as to clarify the reported unusual features of the silver perchlorate-benzene complex, we have prepared a number of hitherto unknown crystalline complexes of the type $\operatorname{ArAgX}$, where Ar represents a variable aromatic donor and $X$ a variable anion. This is part of a general program of investigation of the structure of metal ion-aromatic complexes in which the effect of the following factors on complex formation is being investigated: (1) the electronic structure and energy levels of the metal ion and the aromatic system; (2) metal ion-anion interactions; (3) steric factors; and (4) molecular packing, at least in the solid state. As part of this research, we have prepared $\mathrm{C}_{6} \mathrm{H}_{6} \cdot \mathrm{AgAlCl}_{4}$ and have found no simple relationship in terms of space group or cell dimensions between this compound and $\mathrm{C}_{6} \mathrm{H}_{6} \cdot \mathrm{CuAlCl}_{4}{ }^{7,8}$ or $\mathrm{C}_{6} \mathrm{H}_{6} \cdot \mathrm{AgClO}_{4} \cdot{ }^{6} \quad$ We undertook a single-crystal X-ray structure analysis to determine the stereochemistry of the $\mathrm{C}_{6} \mathrm{H}_{6} \cdot \mathrm{AgAlCl}_{4}$ complex and also to further our understanding of the nature of the bonding between the metal ion and the aromatic system. The metal-
(1) In partial fulfillment for the Ph.D. requirements, University of Pittsburgh, 1965.
(2) Research performed at the University of Pittsburgh. Address all correspondence to this author.
(3) L. J. Andrews and R. M. Keefer, J. Am. Chem. Soc., 71, 3644 (1949); 72, 3113, 5034 (1950).
(4) R. S. Mulliken, ibid., 74, 811 (1952).
(5) M. J. S. Dewar, Bull. Soc, Chim. France, 18, C79 (1951).
(6) H. G. Smith and R. E. Rundle, J. Am. Chem. Soc., 80, 5075 (1958).
(7) R. W. Turner and E. L. Amma, ibid., 85, 4046 (1963).
(8) R. W. Turner and E. L. Amma, ibid., 88, 1877 (1966).
anion distances would also give more insight into the role of the anion in these complexes.

## Experimental Section

$\mathrm{C}_{6} \mathrm{H}_{8} \cdot \mathrm{AgAlCl}_{4}$ was prepared by treating a slight excess of pure, dried AgCl with 0.03 mole of resublimed $\mathrm{AlCl}_{3}$ and 20 ml of dried benzene. The procedure for the preparation of this compound and growing of single crystals is very similar to that of $\mathrm{C}_{6} \mathrm{H}_{6} \cdot \mathrm{CuAlCl}_{4}$; for details see ref 8 . There were two complications that arose with $\mathrm{C}_{6} \mathrm{H}_{6} \cdot \mathrm{AgAlCl}_{4}$ that were not present with $\mathrm{C}_{6} \mathrm{H}_{6} \cdot \mathrm{CuAlCl}_{4}$ : (1) the crystals had to be grown in the dark to avoid photochemical decomposition of the silver ion; and (2) it was very difficult to obtain suitable single crystals for diffraction studies. The crystals had a marked tendency to twin, and over a period of 3 years more than 100 crystals were examined until one was found to be sufficiently free of twinning to justify a single-crystal structure analysis. As with $\mathrm{C}_{8} \mathrm{H}_{6} \cdot \mathrm{CuAlCl}_{4}$, the chemical analyses were only sufficiently accurate to indicate the correct stoichiometry.

A crystal of approximately $0.35 \times 0.30 \times 0.40 \mathrm{~mm}$ was used to collect 496 independent $h k l$ observed intensities by standard multiple film equiinclination Weissenberg techniques from $h k 0, h k 1, \ldots$, $h k 5$ levels with Zr -filtered Mo $\mathrm{K} \alpha$ radiation. In addition, $h 0 l$ and $0 k l$ precession-timed exposure intensity data were collected with Zr -filtered Mo $\mathrm{K} \alpha$ radiation and used for preliminary scaling of the three-dimensional Patterson and electron density calculations. Intensities were measured with a calibrated strip. The linear absorption coefficient ( $\mu$ ) for $\mathrm{C}_{6} \mathrm{H}_{6} \cdot \mathrm{AgAlCl}_{4}$ with Mo $\mathrm{K} \alpha$ radiation is $28 \mathrm{~cm}^{-1}$. Since some surface decomposition was unavoidable and the absorption due to this decomposition could not be readily calculated, no corrections for absorption were made.
Calculations were made with an IBM 7090. Patterson and Fourier calculations were made with the Sly-Shoemaker-Van den Hende program. The refinement was carried out by full-matrix least squares ${ }^{9}$ with the Hughes ${ }^{10}$ weighting scheme with $4 F_{\text {min }}=15$. We minimized the function $\Sigma w\left(F_{0}-F_{c}\right)^{2}$. Atomic scattering factors were taken from the compilation of Ibers ${ }^{11}$ for $\mathrm{Ag}^{+}, \mathrm{Cl}^{-}$, $\mathrm{Al}^{3+}$, and neutral C.

## Results

Unit Cell and Space Group. $\mathrm{C}_{6} \mathrm{H}_{6} \cdot \mathrm{AgAlCl}_{4}$ was found to crystallize in the monoclinic crystal system. With Mo $\mathrm{K} \alpha(0.7107 \mathrm{~A}$ ), cell constants were obtained from precession photographs: $a=9.09, b=10.22$, $c=12.73 \mathrm{~A}($ all $\pm 0.03 \mathrm{~A})$, and $\beta=95^{\circ} 05^{\prime} \pm 15^{\prime}$. The observed systematic extinctions (for $h 0 l, l=2 n$ +1 ; and for $0 k 0, k=2 n+1$ ) uniquely specify the space group as $\mathrm{P} 2_{1} / \mathrm{c}$. With four $\mathrm{C}_{6} \mathrm{H}_{6} \cdot \mathrm{AgAlCl}_{4}$
(9) W. R. Busing, K. O. Martin, and H. Levy, or fls program.
(10) E. W. Hughes, J. Am. Chem. Soc., 63, 1737 (1941).
(11) J. A. Ibers, "International Tables for X-Ray Crystallography," Vol. III, The Kynoch Press, Birmingham, England, 1962, pp 202, 210.

Table I. Calculated and Observed Structure Factors, $F(C)=10 F($ calcd $)$

| $\begin{array}{r} \text { FIUI } \\ \text { OKO } \end{array}$ |  | flCl | SKO (CONT) |  |  | 3KI (CONT) |  |  | -6K1 |  |  | 2K2 |  |  | -5K2 (CONT) |  |  | 11K2 |  |  | 4K3 (CONT) |  |  | -2K4 |  | -6k4 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | 457 | 484 | 3 | 213 | 212 | 7 | 163 | 168 |  | 383 |  | 0 | 223 | -147 | 7 | 107 | 103 | 2 | 53 | 75 | $\varepsilon$ | 44 | -6C | C | 42 | 51 | 1 | 84 | -82 |
| 6 | 440 | -491 | 4 | 176 | 174 | 9 | 165 | -205 |  | $\begin{array}{rr}3 \\ 4 & 139\end{array}$ | 110 | 1 | 239 435 | -326 | 8 |  | -70 |  | $0 \times 3$ |  | 10 | 47 | 75 | 1 | 140 | 171 | 3 | 44 | 96 |
| 8 | 191 | 145 | 5 | 72 | -81 | 10 | 106 | -115 |  | 660 | -73 | 3 | 435 | 431 | 9 | 80 $6 \times 2$ | -53 | 3 | 146 | -181 |  | -4K3 |  | $?$ | 102 | -81 | 5 | 102 | -88 |
|  | $1 \times 0$ |  | 8 | 60 | 49 |  | -3k1 |  |  | 763 | -59 | 4 | 180 |  |  | 212 | 196 | 4 | 81 | 82 | 3 | 40 | -59 | 3 | 155 | $-182$ |  |  |  |
| 2 | 129 | -9/, |  | 9KC |  | 2 | 193 | 156 |  | - 115 | 119 | 5 | 104 | -88 | 1 | 107 | 190 | 5 | 66 | 63 | 5 | 65 | -59 |  |  |  |  | 7K4 |  |
| 3 | 113 | 45 | 1 | 143 | -158 | 4 | 68 | -34 |  | 7K1 |  |  | 239 | 240 | 2 | 2.11 | -220 | 7 | 71 | 83 | 7 | 148 | 143 | 4 | 110 | 114 | 0 | 47 | 51 -46 |
| 4 | 271 | 253 | 3 | 113 | 118 | 5 | 289 | -238 |  | - 56 | HS | 7 | 150 | 155 | 3 | 108 | - 25 | 7 | 28 | -45 | 7 | 144 | 143 | 5 | 37 | 43 | 1 | 47 | -46 |
| 5 | 271 | -250 | ל | 82 | -112 | 6 | 69 | 49 |  | 38 | -18 | 10 | 60 | 86 | 4 | 70 | 61 | 9 | 80 | 55 |  | 5k3 |  | 7 | 82 | -83 | 2 | 41 | -90 |
| 6 | 303 | -305 |  | 10 CK |  | 7 | 138 | 95 | 4 | 45 | -5 |  |  |  | 5 | 141 | 90 | 9 | 86 183 | 91 | 1 | 33 | -46 | 9 | 50 | 49 |  |  |  |
| 8 | 133 | 138 | 0 | 164 | -184 | 8 | 213 | $-197$ | 5 | 5156 | 160 |  | -2k2 |  | 6 | 128 | -122 | 2 | $1 \times 3$ 27 | 19 | 2 | 57 | 64 |  | $3 \times 4$ |  | 6 | 54 | -56 |
|  | 2KC |  | 1 | 91 | -100 | 9 | 129 | $-117$ |  | - 74 | 66 | 0 | 136 | 120 | 8 | 5 | 63 | 2 | 175 | 116 | 4 | 43 | -37 | 0 | 126 | -110 |  | 7k4 |  |
| 3 | 327 | -204 |  | CK1 |  | 10 | 67 100 | 71 |  | -7K1 |  | 3 | 280 | $-307$ |  | -6k2 | 63 | 6 | 175 86 | 116 -96 | 6 | 69 | 76 | 2 | 58 | -45 | 3 | 57 | 74 |
| 3 | 423 | 448 -124 | 3 | 71 | ${ }^{7} 11^{\circ}$ | 11 | 100 | 94 |  | 86 | 91 | 5 | 245 | 360 | 0 | 152 | 131 | 8 | 77 | - 86 | 8 | 46 | -70 | 2 | 143 | 130 |  | 8 K 4 |  |
| 4 | 175 | -124 | 4 | 130 | 113 |  |  |  |  | 44 | -83 | 6 | 184 | -169 | 1 | 225 | -242 | 9 | 43 | 33 | 10 | 51 | 51 | 3 | 48 | -37 | 3 | 37 | 55 |
| 5 | 216 | -193 | 5 | 312 | 344 |  | 4K1 |  |  |  | 57 | 7 | 73 | -70 | 2 | 125 | 78 |  |  |  |  |  |  | 4 | 61 | -58 |  | $0 \times 5$ |  |
| 8 | 68 | 46 | 6 | 162 | -145 | 0 | 65 | C |  | $55$ | -57 | 10 | 101 | -86 | 3 | 207 | 257 |  | -1K3 |  |  | $5 \mathrm{~K}^{3}$ |  | 6 | 81 | 80 | 4 | 60 | 56 |
|  | 3 KO |  | 7 | 201 | -198 | 1 | 211 | -181 |  |  |  |  | 3<2. |  | 4 | 69 | 57 | 3 | 135 | -166 | 3 | 78 | 60 |  |  |  | 7 | 87 | -91 |
| 1 | 97 | 44 | 9 | 107 | 99 | 3 | 77 | 51 |  | 8 Kl |  | 0 | 270 | -296 | 5 | 130 | -130 | 4 | H7 | -74 | 4 | 73 | 44 |  | 3 K 4 |  | 8 | 46 | 5,2 |
| 3 | 371 | 32 C | 10 | 59 | -44 | 4 | 114 | -89 |  | $8 \mathrm{6r}$ | 70 | 1 | 178 | -153 | 6 | 43 | -29 | 5 | 67 | 5 | 5 | 67 | -40 | 1 | 1.61 | 173 |  | 1<5 |  |
| 4 | 462 | -506 | 11 | 80 | -78 | 5 | 121 | -1c7 |  | 110 | -11\% | 2 | 462 | 523 | 7 | $11 \%$ | 118 | 7 | 52 | -63 | 6 | 52 | -36 | 2 | 76 | 64 | 1 | 36 | 24 |
| 6 | 66 | 73 |  | $1 \times 1$ |  | 6 | 84 | 48 |  | 51 | -118 | 3 | 123 | -84 | 8 | 67 | -66 | 9 | 76 | 98 | 7 | 93 | 84 | 5 | 84 | 86 | 2 | 54 | -48 |
| 8 | 141 | $-133$ | 3 | 75 | 50 | 7 | 72 | 51 |  | 77 | 109 | 4 | 337 | -347 |  | 7K2 |  | 11 | 49 | -64 |  | $6 \times 3$ |  | 6 | 47 | 42 | 5 | 84 | -100 |
|  | 4 C |  | 4 | 275 | 255 | 8 | 80 | -71 | 6 | 56 | -75 | 5 | 153 | -114 | 0 | 307 | 325 |  |  |  | 2 | 43 | 50 | 7 | 69 | -83 | 6 | 40 | -4.7 |
| 0 | 462 | -381 | 5 | 26.8 | 7.71 | 9 | 142 | -166 |  |  |  | 6 | 249 | 225 | 1 | 46 | -34 |  | 2к3 |  | 7 | 74 | -111 | 9 | 63 | 59 |  |  |  |
| 1 | 294 | 308 | 6 | 245 | -246 |  | -4K1 |  |  | -8K1 |  | 7 | 55 | 45 | 2 | 167 | -163 | 1 | 125 | 122 |  |  |  |  | 4K4 |  |  | 1Kb |  |
| 2 | 375 | 354 | 8 | 93 | 73 | 1 | 12H | 75 |  | 43 | 24 | 8 | 82 | -73 | 4 | 153 | 156 | 2 | 33 | -26 |  | 6 K 3 |  | 0 | 30 | -31 | 3 | 53 | -50 |
| 3 | 15 | 57 | $?$ | 91 | 87 | 3 | 118 | 99 |  | 62 | -92 |  |  |  | 5 | 63 | -45 | 3 | 81 | 76 |  | 36 | -39 | 1 | 93 | 105 | 5 | 30 | 37 |
| 4 | 341 | -395 | 10 | 157 | -157 | 4 | 147 | -124 | 4 | 80 | $-103$ |  | -3k2 |  | 6 | 153 | -166 | 4 | 48 | 52 | 4 | 4,3 | - 46 | 2 | 81 | 66 | 6 | 28 | 2 C |
| 5 | 180 | 172 |  | -1K1 |  | 5 | 264 | -256 | 7 | 50 | -75 | 0 | 327 | -327 |  | 7 K 2 |  | 6 | 46 | -90 | 4 | 7K3 |  | 3 | 43 | -83 | 7 | 62 | -6 6 |
| 6 | 127 | 125 | 3 | 116 | -101 | 6 | 140 | -105 | 9 | 62 | 90 | 3 | 187 | -138 | 0 | 102 | 98 | 7 | 51 | 66 |  | $7 \times 3$ |  | 5 | ¢ 5 | 79 |  | 2ks |  |
| 7 | 136 | -113 | 4 | 47 | 55 | 7 | 120 | 42. |  |  |  | 5 | 260 | 205 | 1 | 96 | -65 | 8 | 47 | 57 | 7 | 56 | -73 |  |  |  | 2 | 49 | -40 |
| H | 186 | -198 | 5 | 109 | 83 | 9 | 121 | -132 |  |  |  | 7 | 71 | -68 | 2 | 104 | -101 |  |  |  |  | OK 4 |  |  | 4K4 |  | 5 | 100 | - 32 |
|  | 5K0 |  | 6 | 130 | 139 | 11 | 66 | 92 | 2 | $\begin{array}{r} 9 K 1 \\ 83 \end{array}$ | -10́ |  | 4K2 |  | 3 | 174 | 178 |  | -2k3 |  | 3 | 103 | 97 | 0 | 87 | -7h |  | 2ks |  |
| 0 | 250 | -216 | 7 | 235 | -234 |  |  |  |  |  | -106 | 0 | 350 | -378 | 4 | 60 | 67 | 1 | $\square 5$ | 85 | 3 | \$1 | 27 | 1 | 121 | 112 | 2 | 43 | -56 |
| 1 | 391 | 426 | 8 | 164 | -154 |  | 5 Kl |  |  | -951 | -45 | 2 | 224 | 198 | 6 | 76 | -68 |  | 32 | 33 | 5 | 78 | -66 | 2 | 75 | 7 H | 4 | 64 | -7\% |
| 2 | 265 | 235 |  | 2k1 |  | 1 | 230 | $-255$ | 4 | 69 | -102 | 4 | 300 | $-287$ |  |  |  | , | HL | -83 | 7 | 46 | 44 | 9 | 69 | 38 | 5 | 53 | 64 |
| 3 | 176 | -140 | 1 | 238 | -236 | 2 | 43 | -43 | 4 |  | -102 | 6 | 124 | 143 |  | 8 K 2 |  | 4 | 10 C | -104 |  |  |  | 6 | う 6 | 58 | 6 | $3{ }^{5}$ | 34 |
| 4 | 212 | -162 | 3 | $15 \%$ | 151 | 3 | 93 | -67 | 5 | 64 | -28 |  |  |  | C | 178 | 197 | 6 | 63 | 4 B |  |  |  | 7 | 47 | -32 | 7 | 44 | -34 |
| 5 | 2 l | 191 | 4 | 311 | 340 | 4 | 187 | -220 |  |  |  |  |  |  | 1 | 140 | -150 | 7 | 43 | -2\% |  | 1 k 4 |  |  |  |  | 3 | $b 1$ | 4 C |
| 6 | 41 | 68 | 5 | 175 | 141 | 6 | 167 | 202 |  | OK2 |  | 0 |  |  | 3 | 126 | 75 | 8 | $5 \%$ | -67 | 2 | 67 | $5 \%$ |  |  |  |  | 3 Kb |  |
| 7 | 188 | -199 | 6 | 180 | -167 | 7 | 16 | 72 | 3 | 78 | -159 |  |  |  | 4 | 63 | 59 | 9 | 48 | 34 | 3 | 149 | 162 | 0 | 119 |  | $?$ | be | 44 |
| + | 105 | -111 | 7 | 156 | 155 | 8 | 90 | -106 | 4 | 313 | ? 24 | 2 | 231 | -400 | 5 | 170 | -131 | 10 | $b 1$ | 48 | 4 | 47 | -36 | 1 | 108 | 119 90 | 3 | 13 | 40 |
|  | 6KC |  | 8 | 139 | 136 | 10 | 101 | 119 | 8 | 96 | -97 |  |  |  | 6 | 69 | -76 |  |  |  | 5 | 111 | -95 | $?$ | 45 | -41 | 5 |  | -70 |
| c | 122 | 108 | 10 | 171 | -203 |  | Sk1 |  | ${ }^{8}$ | 133 | 143 | 8 |  | -52 |  |  |  |  | 3<3 |  | 7 | 76 | 84 | 3 | 71 | -71 |  | 3 K 5 |  |
| 1 | 2ヶC | 2.45 |  | -2k1 |  | 1 | 244 | 2:7 | 11 | 56 | -1,5 | 8 |  |  |  | 8 k 2 |  | 1 | 37 | 39 | 8 | 88 | -68 | . | 06 | -7, | 1 | 43 | 1, 8 |
| 2 | 104 | -90 | 1 | 75 | -71 | 2 | 92 | -57 |  | 1 k 2 |  |  |  |  | 0 | 82 | 67 | 2 | 27 | -5 |  | -1K4 |  | 5 | HO | 70 | 2 | 51 | -40 |
| 3 | 105 | -114 | 2 | 479 | 573 | 3 | 152 | 127 | 3 | 144 | 215 |  | 5 k 2 |  | 2 | 76 148 | -52 | 5 | 130 | -81 |  | 126 |  | 6 | 53 | -4? | 3 | 47 | 45 |
| 4 | 102 | 91 | 3 | 156 | -106 | 4 | 135 | 1.34 | 4 | 144 | 110 |  | 125 | -73 | 2 | 148 | -168 | 5 | 68 | -68 | 2 | 128 |  |  |  |  | 4 | - ${ }^{\text {a }}$ | $-101$ |
| 5 | 100 | 96 | 5 | 210 | -154 | 5 | 176 | -153 | 5 | 44 | -48 | 1 | 255 | 212 | 4 | 94 | 78 | 6 | 42 | -39 | 3 | 74 | -63 |  |  |  | 6 | bl | 49 |
| 7 | 110 | -99 | 6 | 222 | 191 | 6 | 153 | -16.3 | 6 | 206 | 152 | 2 | 184 | -135 |  | 9 K 2 |  | 7 | 73 | 82 | 4 | 7 | 6 |  | -5k4 |  |  | 4K, |  |
|  | 1KC |  | 7 | 134 | -108 | 8 | 49 | 107 | $\varepsilon$ | 156 | 125 | 3 | 24 C | -223 | 1 | 99 | -107 | 9 | 45 | -55 | 7 |  | -52 | 0 | 132 | -141 | 1 | 417 | 61 |
| 0 | 130 | 130 | 8 | 245 | -234 | 4 | 67 | -68 | 0 | 3 | 37 | 4 |  | 7 | 5 |  | -104 |  | -3k3 |  |  |  |  | 2 | 30 | 41 | 2 | 64 | 64 |
| 1 | 87 | 65 | 9 | 62 | - 53 | 11 | 53 | 49 | 11 | 82 | -84 | 5 | 87 | 78 |  |  |  | 2 | 85 | 75 |  | 2K4 |  | 3 | 83 | 64 |  |  |  |
| 2 | 221 | $-203$ | 10 | 09 | 112 |  |  |  |  |  |  |  | 5K2 |  |  | 9K2 |  | 3 | 63 | 49 | 0 | 157 | -144 | 4 | ¢1 | -54 |  | 4 K 5 |  |
| 3 | 70 | 60 | 12 | 75 | -95 |  | 6K 1 |  |  | 1 K 2 |  | 0 | 201 | -183 | 1 | 92 | 115 | 5 | 61 | -.39 | 1 | 131 | -131 | 6 | 91 | 64 | 1 | 40 | C |
| 4 | 245 | 280 |  |  |  | 1 | 156 | $-136$ | 3 | 289 | -302 | - | 289 | - 253 | 2 |  | -50 | 6 | 111 | 101 | 2 | 175 | 187 |  | 6 K 4 |  | 2 | 42 | -33 |
| 5 | 67 | 52 |  | 3 K 1. |  | 3 | ${ }^{6}$ | -78 | 4 | 271 | 273 | 2 | 328 | 308 |  | - 64 | -115 | 7 | 67 | 45 | 3 | 66 | 43 | 0 | 120 | 113 | 3 | 42 | 4.8 |
| H | 105 | 105 | 1 | 249 | -23? | 4 | - 2 | -61 | 5 | 209 | 196 | 3 | 216 | 189 | 2 | 94 |  | 8 | 70 | -66 | 4 | 75 | -76 | 1 | 43 | 27 | 4 | 38 | -46 |
|  | 8 KO |  | 2 | 141 | 115 | 5 | 210 | 212 | 6 | 216 | -229 | 4 | 82 | -56 |  | OK | 106 |  | 4i3 |  | 5 | 12 C | -117 | 2 | 91 | -96 | 6 | 38 | 55 |
| 0 | 127 | 141 | 3 | 211 | 190 | 6 | 153 | 150 | 7 | $\pm 9$ | -100 | 5 | 211 | -174 | 1 | 51 |  | 2 | 42 | 34 | 6 | 5 | 53 | 3 | 52 | -44 |  | 50, |  |
| 1 | 116 | -102 | 4 | 235 | 192 | 9 | 18 | 98 | 10 | 80 - | -120 | 6 | 181 | 150 | 3 | 58 | -97 | 4 | 145 | -1c4 | 8 | 54 | 60 | 4 | 47 | 58 | 1 | 69 | 67 |

entities per cell, the calculated crystal density was found to be $2.01 \mathrm{~g} \mathrm{~cm}^{-3}$. No density determination was made, but the cell volume of $1176 \mathrm{~A}^{3}$ is very close to the $1123 \mathrm{~A}^{3}$ found for $\mathrm{C}_{6} \mathrm{H}_{6} \cdot \mathrm{CuAlCl}_{4}$, which has been shown to have four molecules per cell.

Determination of the Structure. The observed intensities were corrected for Lorentz and polarization factors and reduced to squared structure factors for input to the three-dimensional Patterson function.

From the three-dimensional Patterson function it was found that the Ag , four Cl , and Al atoms were in the general positions of $\mathrm{P} 2_{1} / \mathrm{c}, \pm(x, y, z: x, 1 / 2-y, 1 / 2+$ $z$ ). ${ }^{12}$ The carbon atoms were located from threedimensional electron density sections with phases based upon the Ag , four Cl , and Al atom coordinates. The structure was refined by least squares until the maximum shift of position coordinates for the last refinement cycle was found to be 0.0003 of the cell edges for the heavier atoms and 0.002 for carbon. The variables were the atomic coordinates, individual isotropic atomic temperature factors, and the scale factors for the isotropic
refinement. For the anisotropic refinement, the Ag and Cl atoms had variable anisotropic temperature factors of the form $\exp -\left(\beta_{11} h^{2}+\beta_{22} k^{2}+\beta_{33} l^{2}+2 \beta_{12} h k+\right.$ $2 \beta_{23} k l+2 \beta_{13} h l$ ), but the carbon atoms had only an individual isotropic variable temperature factor. The scale factors were not varied after the isotropic refinement. A final three-dimensional difference map did not indicate any unusual features. The final disagreement index, $R\left(R=\Sigma| | F_{0}\left|-\left|F_{\mathrm{c}}\right| / \Sigma\right| F_{\mathrm{o}} \mid\right)$, after refinement was found to be 0.132 , and the final weighted disagreement index was 0.168 . The standard error of an individual reflection $\left\{\left[\Sigma_{i} w_{i}\left(F_{\mathrm{c}}-F_{\mathrm{o}}\right)^{2} /(m-n)\right]^{1 / 2}\right.$, where $m=496$ observations and $n=78$ variables $\}$ upon completion of the refinement was found to be 2.07. Although the value of the disagreement index is somewhat high by modern standards, as are the errors, the stability of the compound and the nature of the crystals are such that we feel that we have done the best analysis possible with the best data we have been able to obtain. Hence, no physical interpretation should be made of the anisotropic temperature factors. The final observed and calculated structure factors are listed in Table I. Final atomic parameters and standard

Table II

| Positional and Temperature Parameters and Errors ${ }^{a}$ |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Atom | $x / a$ | $y / b$ | $z / c$ | $\sigma(x) / a$ | $\sigma(y) / b$ | $\sigma(z) / c$ |
| Ag | 0.1382 | 0.2297 | 0.0323 | 0.0003 | 0.0003 | 0.0008 |
| $\mathrm{Cl}(1)$ | 0.8527 | 0.5069 | 0.6290 | 0.0014 | 0.0015 | 0.0030 |
| $\mathrm{Cl}(2)$ | 0.2300 | 0.4385 | 0.6753 | 0.0014 | 0.0015 | 0.0029 |
| $\mathrm{Cl}(3)$ | 0.0472 | 0.6076 | 0.8651 | 0.0016 | 0.0013 | 0.0031 |
| $\mathrm{Cl}(4)$ | 0.0996 | 0.7547 | 0.6215 | 0.0018 | 0.0011 | 0.030 |
| Al | 0.0574 | 0.5767 | 0.6998 | 0.0016 | 0.0013 | 0.0036 |
| $\mathrm{C}(1)$ | 0.5422 | 0.2504 | 0.1120 | 0.0055 | 0.0048 | 0.0110 |
| $\mathrm{C}(2)$ | 0.4895 | 0.3554 | 0.1548 | 0.0052 | 0.0050 | 0.0101 |
| $\mathrm{C}(3)$ | 0.3532 | 0.4289 | 0.1081 | 0.056 | 0.056 | 0.0115 |
| $\mathrm{C}(4)$ | 0.3478 | 0.3747 | 0.0007 | 0.0055 | 0.0054 | 0.0107 |
| $\mathrm{C}(5)$ | 0.4458 | 0.2884 | 0.9466 | 0.0054 | 0.0053 | 0.0106 |
| $\mathrm{C}(6)$ | 0.5144 | 0.2908 | 0.4805 | 0.0058 | 0.0052 | 0.0102 |

Thermal Parameters and Standard Deviations
[Anisotropic Temperature Factors of the Form $\exp -\left(\beta_{11} h^{2}+\beta_{22} k^{2}+\beta_{33} 2^{2}+2 \beta_{12} h k+2 \beta_{13} h l+2 \beta_{23} k l\right) ; \sigma^{\prime}=\sigma \times 10^{4}$ ]

${ }^{a}$ Numbers in parentheses consistent with subscripts in other tables and figures.

Table III. Distances and Angles for $\mathrm{C}_{6} \mathrm{H}_{6} \cdot \mathrm{AgAlCl}_{4}$

deviations are tabulated in Table II. Interatomic distances, angles, ${ }^{13}$ and errors are listed in Table III.
(13) W. R. Busing, K. O. Martin, and H. Levy, or fFe program.

Description of the Structure. The crystal structure is composed of sheets of infinite extent in the $b c$ plane weakly held together by van der Waals forces. These


Figure 1. A perspective view down the $b(y)$ axis of the unit cell outlined by dashed lines. Primes denote different $\mathrm{AlCl}_{4}-$ tetrahedra $(b=$ $10.22 \mathrm{~A}): \mathrm{Ag}_{1}{ }^{*}$ at $y \sim b / 4, \mathrm{Ag}_{2}{ }^{*}$ at $y \sim-b / 4, \mathrm{Cl}_{2}{ }^{*}$ at $y \sim 0, \mathrm{Cl}_{4}{ }^{*}$ at $y \sim-1 / 4 b, \mathrm{Cl}_{1}{ }^{*}$ at $y \sim 0, \mathrm{Cl}_{1}{ }^{\prime *}$ at $y \sim 0, \mathrm{Cl}_{4}{ }^{*}{ }^{*}$ at $y \sim 1 / 4 b, \mathrm{Cl}_{2}{ }^{\prime *}$ at $y \sim 0, \mathrm{Cl}_{3}{ }^{\prime \prime}$ at $y \sim b / 3, \mathrm{Cl}_{3}{ }^{\prime \prime \prime *}$ at $y \sim b / 3$.


Figure 2. A perspective view of $\mathrm{Ag}_{1}$ * of Figure 1 down the $c$ axis showing the ring coordination geometry and the fivefold coordination of $\mathrm{Ag}(\mathrm{I})$. Dotted lines refer to other $\mathrm{Ag}-\mathrm{Cl}$ interactions.
sheets are composed of $\mathrm{AlCl}_{4}{ }^{-}$tetrahedra interconnected by silver to chlorine bonds with $\pi$-type $\mathrm{Ag}-\mathrm{C}_{6} \mathrm{H}_{6}$ interactions extending out of the sheets (Figure 1). It can be seen from Figure 1 that each $\mathrm{Ag}(\mathrm{I})$ species is linked to chlorine atoms of three different tetrahedra in such a manner that each halogen of every $\mathrm{AlCl}_{4}{ }^{-}$ entity is involved in a silver-chlorine interaction. For example, $\mathrm{Ag}_{1}{ }^{*}$ connects $\mathrm{Cl}_{1}{ }^{\prime *}$ and $\mathrm{Cl}_{4}{ }^{*}$ 號 one tetrahedron with $\mathrm{Cl}_{3}{ }^{\prime \prime *}$ and $\mathrm{Cl}_{2}{ }^{*}$ of two other $\mathrm{AlCl}_{4}{ }^{-}$ entities, and $\mathrm{Ag}_{2}{ }^{*}$ connects $\mathrm{Cl}_{2}{ }^{*}$ and $\mathrm{Cl}_{4}{ }^{*}$ of the $\mathrm{Cl}_{2}{ }^{*}$ tetrahedron with $\mathrm{Cl}_{2}{ }^{\prime *}$ and $\mathrm{Cl}_{3}{ }^{\prime \prime \prime *}$ of two tetrahedra. Thus, each silver has four halogen interactions with $\mathrm{Cl}_{2}$ at $2.59 \mathrm{~A}, \mathrm{Cl}_{3}$ at $2.77 \mathrm{~A}, \mathrm{Cl}_{4}$ at 2.80 A , and $\mathrm{Cl}_{1}$ at 3.04 A . These interactions, along with the $\mathrm{Ag}-\mathrm{C}_{6} \mathrm{H}_{6}$ $\pi$ interaction, give $\operatorname{Ag}(1)$ the unusual coordination
number of five (Figure 2). All other $\mathrm{Ag}-\mathrm{Cl}$ interactions are greater than 5 A . However, as the angles indicate, this is a rather irregular fivefold geometry. Inspection of Table III shows that all other distances correspond to only van der Waals interactions. The nearest $\mathrm{Ag}-\mathrm{C}$ distances are 2.47 and 2.92 A ; and the Ag-to-center of nearest $\mathrm{C}-\mathrm{C}$ bond is 2.57 A , all $\pm 0.06$ A. In contrast to $\mathrm{C}_{6} \mathrm{H}_{6} \cdot \mathrm{AgClO}_{4}$, each Ag is bonded to only one aromatic ring. Within the relatively large experimental error, the aromatic ring is planar. All the $\mathrm{Al}-\mathrm{Cl}$ distances are equal within a standard deviation, $2.13 \pm 0.02 \mathrm{~A}$.

## Discussion

Although there have been several authenticated cases of fivefold coordinated metal ions in the third transition series, ${ }^{14,15}$ these have been generally stabilized by phosphines and/or sterically blocked from further coordination. The most widely known geometries for $\mathrm{Ag}(\mathrm{I})$ compounds are: linear, e.g., $\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}{ }^{+}$and $\mathrm{Ag}(\mathrm{CN})_{2}{ }^{-} ;{ }^{16}$ tetrahedral, e.g., $\mathrm{Ag}\left[\mathrm{SC}\left(\mathrm{CH}_{3}\right) \mathrm{NH}_{2}\right]_{4} \mathrm{Cl} ;{ }^{17}$ or octahedral, e.g., Ag. $3\left(\mathrm{O}_{2} \mathrm{C}_{4} \mathrm{H}_{8}\right) \cdot \mathrm{ClO}_{4}{ }^{18}$ However, a number of distorted arrangements of atoms about $\mathrm{Ag}(\mathrm{I})$ are also known. ${ }^{19,20}$ We know of no previous
(14) S. J. La Placa and J. A. Ibers, Inorg. Chem., 4, 778 (1965); 5, 405 (1966) ; J. Am. Chem. Soc., 85, 3501 (1963).
(15) P. L. Orioli, M. Di Vaira, and L. Sacconi, Inorg. Chem., 5, 400 (1966).
(16) A. F. Wells, "Structural Inorganic Chemistry," Oxford University Press, London, 1962, pp 600, 737.
(17) E. G. Cox, W. Wardlaw, and K. C. Webster, J. Chem. Soc., 775 (1936).
(18) R. J. Prosen and K. N. Trueblood, Acta Cryst., 9, 741 (1956).
(19) D. Britton and J. D. Dunitz, ibid., 19, 662 (1965), and references therein.
(20) R. G. Vranka and E. L. Amma, Inorg. Chem., 5, 1020 (1966).
report of a five-coordinate $\mathrm{Ag}(\mathrm{I})$ species. From Ag and Cl covalent radii" ${ }^{12}$ a "normal" $\mathrm{Ag}-\mathrm{Cl}$ single bond would be expected to be 2.51 A . On the other hand, from ionic radii ${ }^{21 b}$ one would expect an interatomic separation between $\mathrm{Ag}(\mathrm{I})$ and $\mathrm{Cl}^{-}$of 3.06 A . Hence, we feel that the bond distances of $2.59,2.77$, and 2.80 A correspond to varying amounts of covalent character. Although the $3.04-\mathrm{A} \mathrm{Ag}-\mathrm{Cl}_{1}$ distance is long compared to 2.59 A , we feel that this must be considered as something besides a Ag-to- Cl van der Waals interaction for the following reasons: (1) after the $\mathrm{Ag}-\mathrm{Cl}_{1}$ distance of 3.04 A , the next-nearest $\mathrm{Ag}-\mathrm{Cl}$ distance is greater than 5 A ; (2) a more or less tetrahedral environment about the $\operatorname{Ag}(\mathrm{I})$ entity would be expected as appears about $\mathrm{Cu}(\mathrm{I})$ in $\mathrm{C}_{6} \mathrm{H}_{6} \cdot \mathrm{CuAlCl}_{4} ;{ }^{7,8}$ (3) we have observed a similarly long $\mathrm{Ag}-\mathrm{Cl}$ distance of $3.036 \pm 0.005 \mathrm{~A}$ in bis(thiourea)silver(I) chloride ${ }^{22}$ where there is no doubt that this Cl belongs in the coordination sphere; (4) all the $\mathrm{Al}-\mathrm{Cl}$ distances are bracketed by $2.13 \pm 0.02 \mathrm{~A}$ in contrast to the "free" Al-Cl distance of $2.078 \pm 0.008$ found in $\mathrm{C}_{6} \mathrm{H}_{6} \cdot \mathrm{CuAlCl}_{4}^{7,8}$ and the $2.07 \pm 0.02 \mathrm{Al}-\mathrm{Cl}$ terminal distance in $\mathrm{Al}_{2} \mathrm{Cl}_{6 .}{ }^{23}$ However, the 2.13 A compares favorably with the $\mathrm{Al}-\mathrm{Cl}$ distances of 2.136 , 2.141 , and 2.153 (all $\pm 0.007 \mathrm{~A}$ ) in which the halogen is also bonded to the metal atom in $\mathrm{C}_{6} \mathrm{H}_{6} \cdot \mathrm{CuAlCl}_{4}$. Although our estimates of bond length errors in both $\mathrm{C}_{6} \mathrm{H}_{6} \cdot \mathrm{CuAlCl}_{4}$ and $\mathrm{C}_{6} \mathrm{H}_{6} \cdot \mathrm{AgAlCl}_{4}$ may be somewhat optimistic, and hence the statistical significance of these differences may be marginal, this consistency is striking.

It is clear from the results of this structure analysis that cation-anion interactions must be important in determining the stability of the crystalline complex.
(21) L. Pauling, "Nature of the Chemical Bond," 3rd ed, Cornell University Press, Ithaca, N. Y., 1960: (a) p 246; (b) p 514.
(22) E. A. Vizzini and E. L. Amma, to be published. Preliminary Report: Abstracts of American Crystallographic Association Meeting, Gatlinburg, Tenn., June 27-July 2, 1965, Paper No. D7.
(23) K. J. Palmer and N. Elliot, J. Am. Chem. Soc., 60, 1852 (1938).

Similar results were noted for the cuprous-benzene complex as well. Although using Mulliken's ${ }^{4}$ and/or Dewar's ${ }^{5}$ theoretical models for the binding in $\mathrm{Ag}^{+}$. $\mathrm{C}_{6} \mathrm{H}_{6}$ complexes gives the correct orientation of the aromatic ring relative to the $\mathrm{Ag}(\mathrm{I})$ ion, this must be only fortuitous. Both of these formulations consider isolated $\mathrm{Ag}(\mathrm{I})$ and benzene species. This might be a reasonable approximation in $\mathrm{C}_{6} \mathrm{H}_{6} \cdot \mathrm{AgClO}_{4}$ where the $\mathrm{Ag}-\mathrm{O}$ distance is 2.7 A , but not in this complex where the shortest $\mathrm{Ag}-\mathrm{Cl}$ distance of 2.59 A is essentially a $\mathrm{Ag}-\mathrm{Cl}$ single bond ( 2.51 A ). Further, the local environment about the $\mathrm{Ag}(\mathrm{I})$ species is of sufficiently low symmetry that no simple hybrid metal orbital can be considered the acceptor as was the case in $\mathrm{C}_{6} \mathrm{H}_{6} \cdot \mathrm{Cu}$ $\mathrm{AlCl}_{4}$.

The asymmetry in nearest metal-carbon distances of 2.92 and 2.47 A , both $\pm 0.06 \mathrm{~A}$, is similar to that found in $\mathrm{C}_{6} \mathrm{H}_{6} \cdot \mathrm{CuAlCl}_{4}$ ( 2.15 and 2.30 , both $\pm 0.03 \mathrm{~A}$ ) and in $\mathrm{C}_{6} \mathrm{H}_{6} \cdot \mathrm{AgClO}_{4}$ ( 2.40 and 2.63 , both $\pm 0.01 \mathrm{~A}$ ), but is more pronounced. We believe that this asymmetry, although variable in magnitude, is a characteristic of $\mathrm{M}^{+} \cdot \mathrm{C}_{6} \mathrm{H}_{6}$ complexes. The wide variability may be due to packing considerations, but further structural investigation is necessary to establish this feature conclusively.

The present results, coupled with those from $\mathrm{C}_{6} \mathrm{H}_{8}$. $\mathrm{CuAlCl}_{4}$ and a recent refinement of $\mathrm{C}_{6} \mathrm{H}_{6} \cdot \mathrm{AgClO}_{4},{ }^{24}$ cast considerable doubt on nuclear magnetic resonance interpretations ${ }^{25}$ in which the benzene ring is allowed free rotation about its sixfold axis in $\mathrm{C}_{6} \mathrm{H}_{6} \cdot \mathrm{AgClO}_{4}$.
Acknowledgment. We wish to acknowledge financial support from the National Science Foundation (GP1575).
(24) E. L. Amma, to be published.
(25) D. F. R. Gilson and C. A. McDowell, J. Chem. Phys., 39, 1825 (1963).

